An active-set trust-region method for derivative-free nonlinear bound-constrained optimization

نویسندگان

  • Serge Gratton
  • Philippe L. Toint
  • Anke Tröltzsch
چکیده

We consider an implementation of a recursive model-based active-set trust-region method for solving bound-constrained nonlinear non-convex optimization problems without derivatives using the technique of self-correcting geometry proposed in [24]. Considering an active-set method in modelbased optimization creates the opportunity of saving a substantial amount of function evaluations when maintaining smaller interpolation sets while proceeding optimization in lower dimensional subspaces. The resulting algorithm is shown to be numerically competitive.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A trust-funnel method for nonlinear optimization problems with general nonlinear constraints and its application to derivative-free optimization

A trust-funnel method is proposed for solving nonlinear optimization problems with general nonlinear constraints. It extends the one presented by Gould and Toint (Math. Prog., 122(1):155196, 2010), originally proposed for equality-constrained optimization problems only, to problems with both equality and inequality constraints and where simple bounds are also considered. As the original one, ou...

متن کامل

Numerical experience with a derivative-free trust-funnel method for nonlinear optimization problems with general nonlinear constraints

A trust-funnel method is proposed for solving nonlinear optimization problems with general nonlinear constraints. It extends the one presented by Gould and Toint (Math. Prog., 122(1):155196, 2010), originally proposed for equality-constrained optimization problems only, to problems with both equality and inequality constraints and where simple bounds are also considered. As the original one, ou...

متن کامل

Newton's Method for Large Bound-Constrained Optimization Problems

We analyze a trust region version of Newton’s method for bound-constrained problems. Our approach relies on the geometry of the feasible set, not on the particular representation in terms of constraints. The convergence theory holds for linearly constrained problems and yields global and superlinear convergence without assuming either strict complementarity or linear independence of the active ...

متن کامل

A derivative-free trust-region augmented Lagrangian algorithm

We present a new derivative-free trust-region (DFTR) algorithm to solve general nonlinear constrained problems with the use of an augmented Lagrangian method. No derivatives are used, neither for the objective function nor for the constraints. An augmented Lagrangian method, known as an effective tool to solve equality and inequality constrained optimization problems with derivatives, is exploi...

متن کامل

An augmented Lagrangian affine scaling method for nonlinear programming

In this paper, we propose an Augmented Lagrangian Affine Scaling (ALAS) algorithm for general nonlinear programming, for which a quadratic approximation to the augmented Lagrangian is minimized at each iteration. Different from the classical sequential quadratic programming (SQP), the linearization of nonlinear constraints is put into the penalty term of this quadratic approximation, which resu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Optimization Methods and Software

دوره 26  شماره 

صفحات  -

تاریخ انتشار 2011